

"Risk-Based Incident Investigation and Analysis"

<u>Presented by:</u> Paul Esposito, CIH, CSP *President, STAR Consultants* Paul.esposito@starconsultants.net

Presented at: ASSP: September 2019

- Implement the 10 Basic Steps in conducting incident investigations (per NSC)
- ☆ Collect all relevant data for analysis
- ★ Examine control strategies for corrective and preventive actions.

Purpose of an Incident Investigation

- ☆ Control the <u>hazardous energy</u>
- ✤ Identify basic causal factors
- ★ Narrow-down <u>Root Causes</u> from list of causal factors
- ★ Identify deficiencies in systems
- Suggest immediate, corrective (causal factors) and preventive actions (root causes) for a given incident
- ★ Fact-Finding, not Fault-Finding!
- Prevent dissimilar incidents with
 - ☆ Risk Based Trend Analysis

Incident Analysis Definitions

Accident / Incident Definitions

(injury, illness, property damage)

STAR Consultants, Inc. www.starconsultants.net

Ten Steps for Incident Investigation and Analysis

- 1. Provide Emergency Response
- 2. Secure the Area, control immediate hazardous energies
- 3. Identify Potential Witnesses (within 24 hours)
- 4. Use an Investigation Kit
- 5. Procure Hard Evidence and Record Data
- 6. Conduct Interviews
- 7. Review Data
- 8. Prepare Report
- 9. Implement Corrective Action
- 10. Follow Up Classify and Analyze Data and Communicate Results

Asbestos Exposure Scenario

- Employee drilled through asbestos containing spray applied ceiling (ACM) to install electrical conduit.
- ★ O&M plan identified this material as ACM.
 ★ Public area

H&S happened to walk by. Saw some popcorn ceiling materials on the floor.

Approached the electrician. Stopped the job. 5 min in duration. Contact the ACM O&M Manager, Confirmed material as ASM.

Step 1: Immediate Response

- Assess any potential hazard to others, including rescue/first aid personnel
- Eliminate/control identified hazardous energies before rescue attempt.
- ★ Call for professional medical or rescue assistance as dictated by the conditions.
- ✤ Provide first aid, if qualified.
- ✤ Prevent or minimize future risk.

Decon the Electrician

★ Why?

1- to prevent anyone else from being injured by the same thing.

- 2- to preserve evidence.
- 3 to do immediate fixes.

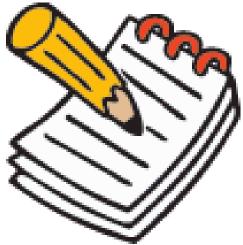
Isolated the immediate area. Restricted any access ERT cleaned up any residual ACM (HEPA)

Step 3: Collect Additional Information

- ★ Visit the incident scene
- ☆ Collect samples (such as spills and residues)
- ★ Make visual records
 - ★ Take Photos
 - Draw a sketch of the incident scene
- ✤ Preserve evidence
- ★ Identify those involved and other resources

Step 4: Use Investigation Tools

- ★ Pictures
- ★ Sketches
- ✤ Baggies
- ⋆ Flashlight



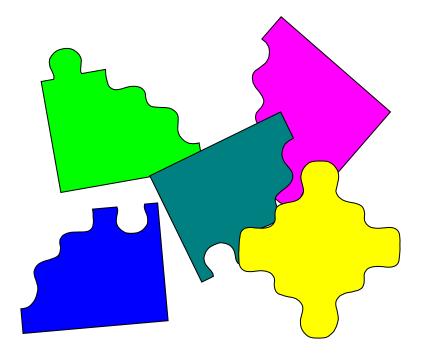
- ★ Warning Tape (in case there are still exposed conditions
- ★ Interview Forms
- ✤ Investigation Forms
- ★ Measuring Tape
- ★ PPE
- ★ Etc.

Step 5: Procure Hard Evidence and Record Data

- 1. People
- 2. Paper
- 3. Parts
- 4. Position

Five "W"s of Incident Investigation

★ WHO ☆ Injured Party / Supervisor / Team ★ WHEN ☆ ASAP -- Memories & Evidence Fresh ★ WHERE ☆ At the Scene ★ WHAT ☆ Causal Factors / Corrective Action Plans 🛧 WHY ★ Identify all Causes ☆ Prevent Similar Incidents


Who are the People?

Asbestos Release

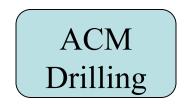
- ★ Maintenance Driller
- ★ Maintenance Supervisor
- ★ Asbestos O&M Manager
- ★ H&S Observer

Collecting Evidence - Paper

- ★ Different Types of Paper Evidence:
 - ★ Records
 - ★ Standards
 - ★ Blueprints
 - ☆ Codes

Records Standards Blueprints Codes

What Papers are Involved?


Asbestos

- ☆ O&M Procedure
 - ★ List of ACM
 - ⋆ Roles and Responsibilities
 - ☆ Annual O&M Audit
- ⋆ Pre-job approvals
- ✤ Pre-job planning
- ☆ Driller (electrician) training

Findings: 1) AC identified. 2) Electrician followed the procedure to get O&M Mgr Approval 3) Annual Audit performed by O&M Mgr. 4) Electrician trained in ACM locations two years ago

Collecting Evidence - Parts

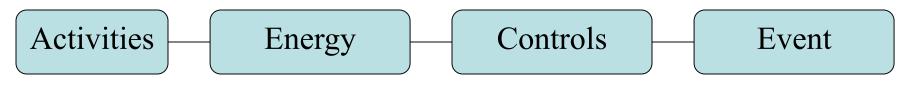
- Various Examples of Parts (Tools, Materials and Equipment)
 - ★ Failed Machinery
 - ★ Communication (electrical signal) Failure
 - ☆ Inadequate Support Equipment
 - ★ Improper Fuels and Fluids
 - ★ Debris at Incident

Collecting Evidence - Position

Location, Location, Location
 Where Incident Occurred
 Where Equipment Ended Up
 Where Wreckage Found
 Where People Were

Public Exposure

Step 6: Conduct Interviews


- Once data is collected, additional interviews will often need to be conducted
 - ★ Interview as soon as possible.
 - ★ Take notes when talking to personnel.
 - ★ Conduct private, separate interviews.
 - Put worker at ease; investigation is for prevention, not to place blame.
 - ★ Use open-ended questions. "what"
 - Ask for worker's version of incident; confirm what is said by rephrasing.
 - ★ Ask <u>yourself</u> "why" questions last, as part of the causal factor.
 - ☆ Close with a positive reminder and thank you.

How to Investigate: Interviewing Options

🖈 Ask

- ★ "Tell me what happened",
- ★ "What were you doing" "what are the Typical Steps"

✤ Pull the string: establish a timeline.

☆ Use "What" phrases to help you find out "Why"

Interview Findings

Asbestos

Supervisor and Driller (Electrician) cleared this material with the O&M Mgr.

O&M Manager gave their approval to disturb this Material. Said it was <u>Not ACM</u>. Later confirmed that this was ACM.

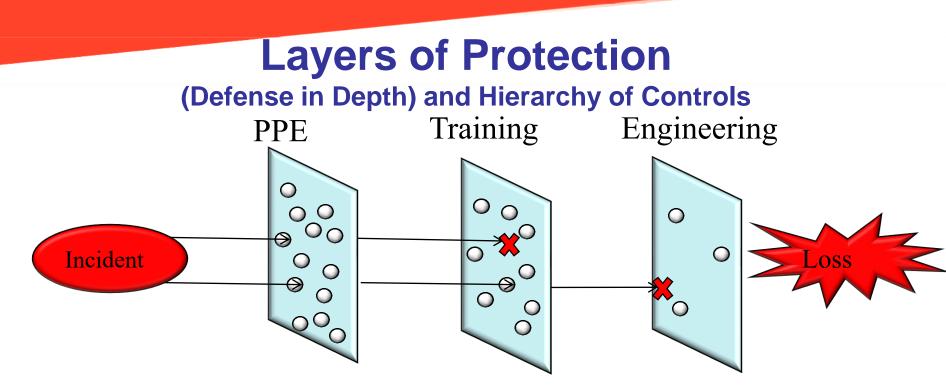
H&S walked by and saw the disturbance.

No labels were visible.

Step 7: Review Data

Incident	Activities	Energy	Controls	Event
List	<u>What</u>	<u>What</u>	What	Start
background	were the	were the	controls	Here:
data: Time location,	steps	energy	were	Describe
who,	leading	sources?	supposed	the event
conditions,	up to the		to be in	and the
etc.	event?		place, but	potential
	\/)	failed? Or	harm
			were	
			ineffective	
			?	

Energies = Hazards


When are hazards not hazardous?
 When will a hazard cause harm?

From OSHA Pub 3071...

- 1) Any chemicals or substances that can cause harm?
- 2) Any unwanted release of energy?
- 3) Any configuration hazards?
- 4) Any gravity hazards?
- 5) Any mechanical hazards?
- 6) Any environmental hazards?

Hierarchy of Control

	Protective Measure	Examples			
Most Effective	Elimination or	Eliminate human interaction			
	Substitution	Eliminate pinch points (increase clearance)			
		Automated materials handling (robots, conveyors, etc.)			
		Replace with less toxic compound,			
		Replace/eliminate a reaction step, etc.			
	Engineering Controls	Barriers			
		Interlocks			
		Presence Sensing Devices (light curtains, safety mats, etc.)			
		Two Hand Controls, etc.			
	Training, Procedures and	Safe work procedures			
	Awareness Means	Safety inspections			
		Training			
		Lights, beacons, and strobes			
		Computer warnings			
		Worker rotation			
Least Effective		Signs and Labels			
		Beepers, horns and sirens, etc.			
	Personal Protective	Ear plugs, gloves, respirators,			
	Equipment (PPE)	Safety Glasses, face shields, etc.			

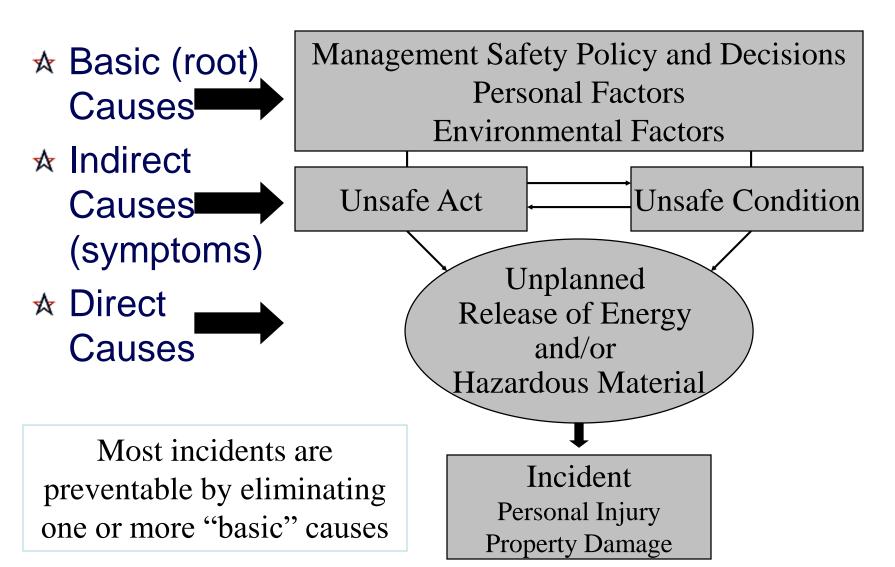
- The circles represent holes or potential failures in a control. As you can see, some controls are more effective than others.
- With multiple layers of protection, what is the chance of each layer failing at the same time?
- The more severe the potential hazard, the more layers of protection you may need.
- SMS risk management is more than a one-time assessment!!!

Are all engineering controls equal?

Protective Measures (Control)	Examples
Engineering	 Barriers Interlocks Presence Sensing Devices (light curtains, safety mats) Machine guards Pressure relief valves, energy isolation valves Non-skid floor coatings Local exhaust ventilation, containerization Two-hand controls Emergency stops are NOT an engineering
	 Emergency stops are <u>NOT</u> an engineering controls in this model

- Active: less reliable. Requires human initiation
- Passive: more reliable

What Controls Failed? Succeeded?


- **Succeeded**
- Admin Procedure: Contact O&M Mgr.
 Admin: List of ACM

Failed

Admin: O&M Manager – single point failure
 Admin: Labeling

Any layers of controls?

OSHA's Three "Cause" Levels

Causal Factors

- ★ People
- ★ Equipment
- ★ Materials
- ★ Environment

Draw the 5 why's from EACH Causal Factor

People and Materials

Root Causes

- Programs that were "supposed" to prevent the incident from happening
- Includes the "Culture"

System Weaknesses:

- 1) O&M Mgr Lack of oversight, ownership and accountability
- 2) O&M Audits Did not ID "no labeling"
- 3) O&M Audits Not independent of O&M owner. (\$\$\$)
- 4) Risk Assessment does not require engineering level or layers of protection for high severity hazards (Appetite)
- 5) Training by itself is NOT effective

Immediate and Preventive Corrective Actions

- ★ Immediate
 - ★ Barricade and prevent personnel
 - ☆ Clean
- ☆ Corrective
 - ★ Materials: labeling
- ☆ Preventive
 - ★ Two layers of controls
 - Approvals need QC level of supervisor. Signed permit.
 - ★ Periodic Independent Auditing of the O&M

Have you minimized the energy, or exposure to the energy?

Follow-Up

- ★ Action Tracking
- Closure Verification
 - ✤ Build into recognitions
- ☆ Closure sustainability
 - ★ 90 days later, is the action still closed
- Control and Risk Appetite
- Trend Reductions
 - ✤ Build into recognitions

Accountability and Recognition

Where Do Most Incident Investigations Fail

- ★ Typically blames employees
- ★ Typically identifies "Human Error" or "Training"
- ★ No standardization of Causal Factor system
- ★ Little real training for Investigators
- ☆ No tracking to or verification of "Closure".
- ★ No QC process or review
- Incidents fixes are considered to be H&S responsibility (not assigning or tracking to the right party)

Where Do Most Succeed!!

- Always includes a review of procedures and controls, to see where the analysis or control(s) failed
- ☆ ID "engineering" fixes
- ★ Worker teams independently verify all corrective actions, to include interviews of affected workers
- Trend analysis of "Causal Factors", Hazard Categories, and Control Failures
- Line management reports status of corrective and preventive action "fix" to Sr. Management

Summary

 Implement 7 of the 10 Basic Steps in conducting incident investigations

✓ Collect all relevant data for incident analysis

 Examine control strategies for corrective and preventive actions.

- ★ National Safety Council (NSC)
 - ★ Incident Investigation Manuals and Videos

Incident Prevention Manual - NSC

- Incident Prevention Manual: Administration and Programs
- ★ Incident Prevention Manual: Engineering and Technology
- James Reasons the swiss cheese model of accident causation

Questions?

Please get in touch with me at <u>Paul.esposito@starconsultants.net</u>